If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9w^2+25w=0
a = 9; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·9·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*9}=\frac{-50}{18} =-2+7/9 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*9}=\frac{0}{18} =0 $
| 33x-39=360 | | -1/5a+3=7 | | 5x-27+7x-32=9x-8 | | -26=-14+v | | 2x^2+41x-252=0 | | 1/8f=3 | | x-0.29x=560 | | 10^x=169 | | y=2/33=4 | | 2(x-5)=7x+25 | | 9(y-2)+5=4+y-17 | | X=33.10x+17 | | 23x+9=1820 | | f(3.86)=5*3.86^2-3*3.86 | | 54.3=2*3.14*r | | 10x+17(x=33) | | 3(x+6)-7x=30 | | 0.25=0.25h+4 | | -24+2y=y-3y | | √x-2^4√x-15=0 | | 15+9+x=90 | | (7x+5)+10=6 | | 2-6y=10+2y | | W^2+8w=252 | | x-0.35x=130 | | -x+5x+(-4)=3x+8 | | 5-1/5=3x/4+0.95 | | 2x^-9x+4=0 | | 0=3x^2+9x−4 | | 8−(4x+21)=3+3(x+4) | | -23.5-6.5r=5(6r+3.5) | | 0.8x=60 |